A spiking network that learns to extract spike signatures from speech signals

نویسندگان

  • Amirhossein Tavanaei
  • Anthony S. Maida
چکیده

Spiking neural networks (SNNs) with adaptive synapses reflect core properties of biological neural networks. Speech recognition, as an application involving audio coding and dynamic learning, provides a good test problem to study SNN functionality. We present a simple, novel, and efficient nonrecurrent SNN that learns to convert a speech signal into a spike train signature. The signature is distinguishable from signatures for other speech signals representing different words, thereby enabling digit recognition and discrimination in devices that use only spiking neurons. The method uses a small, nonrecurrent SNN consisting of Izhikevich neurons equipped with spike timing dependent plasticity (STDP) and biologically realistic synapses. This approach introduces an efficient and fast network without error-feedback training, although it does require supervised training. The new simulation results produce discriminative spike train patterns for spoken digits in which highly correlated spike trains belong to the same category and low correlated patterns belong to different categories. The proposed SNN is evaluated using a spoken digit recognition task where a subset of the Aurora speech dataset is used. The experimental results show that the network performs well in terms of accuracy rate and complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio-inspired Multi-layer Spiking Neural Network Extracts Discriminative Features from Speech Signals

Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative features from speech signals, which can subsequently be used in a classifier. The architecture consists of a spiking convolutional/pooling layer followed by a fully connected spiking...

متن کامل

Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space

This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-...

متن کامل

STDP Provides the Substrate for Igniting Synfire Chains by Spatiotemporal Input Patterns

Spike-timing-dependent synaptic plasticity (STDP), which depends on the temporal difference between pre- and postsynaptic action potentials, is observed in the cortices and hippocampus. Although several theoretical and experimental studies have revealed its fundamental aspects, its functional role remains unclear. To examine how an input spatiotemporal spike pattern is altered by STDP, we obser...

متن کامل

On the Maximization of Information Flow Between Spiking Neurons

A feedforward spiking network represents a nonlinear transformation that maps a set of input spikes to a set of output spikes. This mapping transforms the joint probability distribution of incoming spikes into a joint distribution of output spikes. We present an algorithm for synaptic adaptation that aims to maximize the entropy of this output distribution, thereby creating a model for the join...

متن کامل

Learning Feedforward and Recurrent Deterministic Spiking Neuron Network Feedback Controllers

We consider the problem of feedback control when the controller is constructed solely of deterministic spiking neurons. Although spiking neurons and networks have been the subject of several previous studies, analysis has primarily been restricted to a firing rate model. In contrast, we construct a spike timing based deterministic spiking neuron controller whose control output is one or multipl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 240  شماره 

صفحات  -

تاریخ انتشار 2017